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The intellectual starting point for this work is our belief that bituminous 
coals consist of largely aromatic "clusters" linked together by various bridges 
to form a three dimensionally cross-linked macromolecular network in which some 
extractable molecules are dissolved. 
is to cleave enough bridges to destroy the network. Soluble fragments should 
result. 
duced by selectively cleaving bridges, the relative importance of the vzrious 
types of bridges can be determined. 
such cleavage are the well known Heredy-Neuworth depolymerization2 and the Stern- 
berg reductive alkylation, 3 which cleave methylene bridges and primarily ethers 
respectively. Their chemistry has been reviewed.4 We will concentrate here on 
the Heredy-Neuworth depolymerization. 

soluble in benzene ethanol (70/30 v/v) is stable and passes through a 0.5 p filter. 
The pyridine "solution" is stable, in that nothing precipitates on standing. 
ever 6.8% of the "dissolved" material is removed by a 2.7 p filter. 
solution will not pass a 0.5 p filter. 
tion" (60,000 rpm; 3 hrs) results in precipitation of 40% of the pyridine solubles. 
Before centrifugation, the number average molecular weight (MN) of the pyridine 
"solubles" was 400, quite comparable with results reported by 0the1-s.~ After cen- 
trifugation, &g was 1,000. The increase i s  due to the removal of colloidal ma- 
terial and the latter nuinber is the true % for the dissolved material. Similar 
results have been obtained with a vitrinite sample (PSOC 126). 
these observations, all & values reported for products of Heredy-Neuworth depoly- 
merization must be regarded as questionable and probably erroneous. 
rently determining whether the colloidal material emerges from the coal unchanged 
or whether it is a reaction product. 

The molecular weight distribution measured for the benzene-ethanol soluble 
fraction of de 
gel columns l0I;f' 500, 100 A", THF solvent) followed by vapor pressure osmometry 
of individual fractions is shown in Fig. 2. 
First, there must be association in THF as indicated by the higher 
fraction in that solvent. 
basis of size. Finally, silylation of the depolymerized coal does not decrease its 
MN in pyridine, apparently there is little association via hydrogen bonds involving 
CM groups in that solvent. 
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The simplest way of making the coal soluble 

By looking at the molecular weight distribution of these fragments pro- 

Two well developed ways for accomplishing 

Figure 1 shows the results of depolymerizing Bruceton coal. The fraction 

How- 
The remaining 

Ultracentrifugation of the pyridine "solu- 

As a result of 

We are cur- 

lymerized Bruceton coal by gel permeation chromtography (p-Styra- 

Several important points emerge. 
for the 

Separation on the gpc columns is only partly on the 
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Fig. 1 Solvent Fractionation of Depolymerized Bruceton Coal 
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7 Ar-(CH2)n-Ar + $OH HA ArH + HO$(CH2)nAr 

HA HOO(CH~)~A~ + $OH HO$(CHz)n$OH + ArH 
1 1 

Figure 3. The Depolymerization Reaction 
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Figure 4. 
(From J.W. Larsen and E.W. Kuemmerle, Fuel, 55, 162 (1976)). 
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Figure 5. Molecular Weight D i s t r i b u t i o n  of the True Pyridine Solubles After 
Centrafugation 
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